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We study fﬁe functional errors-in-variables regression model. 1In

the case of no equation error (all randomness due to measurement

errors), the maximum 1ikelihood estimator computed assuming

normality is asympyotically better than the usual moments estimator,

even if the errors are not normally distributed. For certain

statistical problems such as randomized two group analysis of

covarianee, the least squares estimate is shown to be better than

the aformentioned errors-in-variables methods for estimating certain

important contrasts.
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1. Introduction

The problem of estimating linear regression parameters when the variables are
subject to measurement or observation error has a long history and has
recently been the focus of considerable attention. Reilly and Patino-lea)
(1981) 1ist a number of recent publications concerning situations in which
the problem arises; see Wu, Ware and Feinlieb (1980) for a simple but
particularly interesting example in a biomedical context. Blomquist (1977),
Nussbaum (1980), Fuller (1980) and Gleser (1981) have recently addressed
various theoretical aspects of the problem.

The purposes ;f this paper are three. First, by exploiting a particular
representation of estimators we unify and extend some of the asymptotic
results for the normal theory maximum likelihood estimator (normality-MLE)
and the "method of moments" estimators developed by Fuller (1980). Second,
having obtained the asymptotic distributions of the method of momemts
estimators and the normality-MLE, we are in a position to compare the two via
1imiting variances. In a particular important special case, we are able to
show that the normality-MLE is better than the method of moments estimator in
the sense of having an asymptotic normal distribution centered about the true
regression parameter and with smaller asymptotic variance. This is perhaps
not too surprising at the normal model, but it in fact holds even if
assumptions of normality are violated. Our Monte-Carlo study confirms this
result, but we also discuss reasons why one would want to use the method of
moments estimator in practice, especially when using Fuller's small sample
modification.

The third major purpose of this paper is to study the least squares estimator
(LSE), computed as if the variables were observed exactly. The LSE is
generally inconsistent for regression parameters, and thus has not been
considered much in the 1iterature. This is unfortunate because, as has not
been generally recognized, there are important statistical problems in which
the LSE is consistent; one example {s two-group analysis of covariance for a
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randomized study, where the LSE consistently estimates the treatment effect
difference even when there are errors in the variables. A heuristic
asymptotic result suggests that when the LSE is consistent for a particular
contrast, it will be better than the normality-MLE in large samples. The
conjecture is explicitly confirmed for two group analysis of covariance. Our
small Monte-Carlo study is illuminating here.

There are two other features of the paper which are important. First, to the
best of our knowledge the Monte-Carlo results are among the first of their
kind for the errors-in-variables problems we consider, although Wolter and
Fuller (1982 a,b) have Monte-Carlo as well. Second, the Monte-Carlo study
includes recently introduced generalizations of M-estimates (Carroll and
Gallo (1982)), which we show to work quite well.

2. Models, Assumptions and Estimates

We consider a general errors-in-variables (E1V) regression model in which
some subset of the variables is subject to error, while some are observed
exactly; the response is replicated s times and the predictor variables
subject to measurement error are replicated r times. Specifically,

Yy = X1 81 + X2 82 + g
51 * 6 + Vi i = 1, caoy S
Cj = XZ + UJ j = 1, ssey r. .

Here, 8; is a (p; x 1) vector and B, is {p, x 1), p=p + Pp. The vectors
Y1, §, and V1 are of dimension (N x 1), where N is the sample size in the
study. X, and X, are constant matrices of order (N x pl) and (N x pz),
respectively. X1 is observable, however, because of measurement error Uj. X2
is not observable but rather the (N x Pz) matrices cJ are observed. The

(N x 1) random vector 8§ is called the equation error, while the {v,) are the
measurement errors in the response. The assumption that x1 and XZ are
constant puts us in the functional EIV model. In some cases we will assume
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no equation error (s = 0), in which case we have the classical linear
functional relationship. The concept of equation error was introduced by
Fuller (1980).

We assume that the {vi} are mutually independent and independent of & as are
the {Uj}. The elements of § and those of each Vi are i.i.d. with zero mean
and finite variances °62 and °v2 respectively, while the rows of each Uj are

i.i.d. with mean zero and non-singular covariance matrix zu. We define

2 . 2 2
o = g +ov

.‘_I'
X = Lxl X2]

i - -

and assume that X is of full column rank such that

; = 2N x' K is positive definite. (2.1)
We further define

UJ* = [N 2 . Uj] B' = [Bi Bé] Cj* = [X1 cj]
42

| ux
0 : 8y; Byp

Where A11 and the upper left-hand submatrix of zeroes in Zu* are (p1 X pl).

We will discuss a number of special cases of our EIV model and define an
estimator of B in each.

Case No. 1 (No replication) Gleser (1981) and the majority of researchers
assume no rep1iéation is available (r = s = 1), Here, we suppress the
subscripts referring to the replicates and write Y, ¢, C, etc. We assume
that the rows of [U €] have finite fourth moments and that a matrix I, is
known such that




i L
r=d = oz[:;?° f{i]; (2.2)
guo

we define Tons Eygws Ioyov correspondingly.

With lN the identity matrix of order N, write

) -1 1}
(x Xl) X1

R = IN - X 1

1
w=1{[c Y} rRI[C Y]

Let @ be the smallest eigenvalue of ZO-IN. 1If CLC, - 8 to* is non-singluar
(Gallo (1982b) has shown that this holds a.s. if the error distribution is
absolutely continuous), we define

By = (ChCu-or (LY -0, ) (2.3)
This estimate is the maximum likelihood estimate for jointly normally
distributed errors (note: if we omit assumption (2.2), the supremum of the
77 .1ihood is infinite). The estimate was derived in a more general
framework by Healy (1975) and was shown by Gleser (1981) to be equivalent to
a generalized weighted least squares estimate. We emphasize that we will

study (2.3) and the other estimates of B without assuming normality.

Case No. 2 (Equal replication) Here we let s = r > 1. The equal
replication is convenient since it admits simpler notation, but it is by no
means npecessary. It does arise in practicai circumstances. For example, if
one predictor is baseline diastolic blood pressure the response is change in
diastolic blood pressure, as in the Framingham Heart Study of the National
Heart, Lung and Blood Institute and in other studies, a common practice is to
take one replicate, i.e., r = s = 2, A ~ethod of moments estimator motivated
by the work of Fuller (1980) is

- r r , -1 r r , v
#1




sy
W I
5
We assume that the random matrices &, [¢; U;1,.... [e, U ] are mutually
independent and that the other specifications of Case No. 1 hold. (The
normality-MLE has not been calculated for a case such as this in which & # o). g
Case No. 3 (Equal replication, no equation error} This is the same situation ;
as in Case No. 2 except that & = 0, i.e., apart from measurement error the
underlying relation is exactly linear.
, let ) be the smallest eigenvalue of Tl"1 Tz, where
N O R Ny te, v,
Ty = % t [C,Y §;,.-r i, [C, v,
1 =1 j=1 ii iJ N3 0§
T E o Y RO LC, v D)
T,= T +r t [C, Y R{zr [C;, VvV,
2 1 §=1 i. i §=1 i
(61j is the Kronecker delta, the indicator of i = j)., Then with
m”-‘-(t‘(eR-l)Gij-eR)
we define
8 (z 1 AT S c:, Y (2.5)
= I m m.. C! .
WD TS G T T G

This is the normality-MLE in the replication case, and has been derived by
Anderson (1951) and Healy (1980). Note that assumption (2.2) is unnecessary
here.

The estimates in all cases above have been shown to be consistent for é as
N+=; conditions on X weaker than (2.1) were obtained by Gallo (1982b).

In Case No. 2, 8 has been shown by Fuller (1980) to have a limiting normal
distribution when U and ¢ are normally distributed; under non-normality,

Fuller (1975) has some related results, although our proofs are different.
The MLE in Case No. 1 was demonstrated by Gleser (1981) to be asymptotically




normal, but the proof contains a slight error. (In particular, Gleser's Lemma
4.1 is contradicted by the following example: let {y,} be a sequence of
independent random variables assuming values -Zklz, 0, 2k/2 with probabilities

N
2°(k+l), 1-2'k, 2'(k+1), respectively. According to the lemma, N'1/2 Iy,

is asymptotically standard normal, yet it can be shown that this quant*i} is
op (1).) A simple remedy would require that the errors have finite moments
of order greater than four, an assumption we would like to avoid if possible.

Finally, there are practical problems where it is known in advance that
Ly ™ 0. 1In this instance, the estimators (2.3) and (2.5) can be altered to
a form in which they are more efficient. Our main qualitative comparisons

and conclusions (Sections 4-5) are unaffected.

3. Asymptotic Normality

In this section we state the form of the asymptotic distributions of the
estimators. The proofs are technical and are delayed until Section 6.

Theorem 1

(No. 1) 1In Case No. 1, N1/2 (EM - B) is asymptotically normally distributed

with mean zero. If the third and fourth moments of the joint distribution
of the rows of U and ¢ are the same as those of the normal distribution then
the asymptotic covariance matrix of N1/2 (BM -~ B) is

Cov (B,) = d T A‘l[g gjlrl) (3.1)

where

d=1[8-1] ¢ [Bé-l]' ,

. -1 1yl
Q= (01, 8] r7 Iy 81




(No. 2) 1n Case No. 2. N”2 (BR - B) is asymptotically normally

distributed with mean zero and covariance matrix

Cov (B) = a7 (rh (a-d) a v ol (e rt 5

(3.2)
sl (r-l)'1 ((d-og) DI DR)) A-l.

where

DR = (Eu* B - ZEU*) (zu* B - zeu*).-

(No. 3) 1In Case No. 3, NI/2 (éR - B) is asymptotically normally
distributed with mean zero and covariance matrix

Cov (EMR) = (ar'ly 471 4 (r-1)"1 271 [g 8]A'1 (3.3)

Again, note that although two of our three estimates are normality-MLE's, we
do not assume in any part of Theorem 1 that the errors are normally
distributed. The assumption made in part (No. 1) of the theorem that the
error distribution moments are those of the normal distribution is not
necessary for the asymptotic normality of éM; nevertheless, the 1imit variance
depends on the third and fourth error moments and is in general quite
unwieldy. In stating the theorem we thus assume that the moments are those of
the normal distribution (as did Gleser (1981)) since this yields a concise
expression more easily compared with those of other estimates. We have made
no further assumptions on the errors beyond those of Section 2; in particular,
in Cases No. 2 and 3 we require only two finite moments.

4. Comparisons for the Linear Functional Relationship

We consider in this section Case No. 3, the linear functional relationship
with no equation error. In this case the asymptotic covariances (3.2) and
(3.3) are comparable.

L . Bee L
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Theorem 2 For Case No. 3, (even under non-normal distributions), the

normality-MLE (2.5) is asymptotically no worse than the moment estimator
(2.4), i.e.,

Cov (éR) - Cov (Byg)
is positive semi-definite,

The proof is given in Section 7. However, there is an important special case

where the result is obvious, when ¢ = 02 Ip . Then

2
Cov (B,) - Cov (éM ) = 2r} (r-l)'1 o a7l o 0 a7l :
R R 1

of course, what is most interesting about Theorem 2 is that the normality-MLE
is the (asymptotic) winner over method of moments even at non-normal
distributions. To get some idea of whether this result holds in small
samples, we performed the following Monte-Carlo study.

A1l calculations were done at the NIH computing center. Random numbers were
generated using the IMSL routines GGNPM and GGUBS. There were 500 Monte-Carlo
replications. The true model was simple linear regression following the
format of Section 2 with r=s=2 replications. The intercept was 10 and the
slope was -4. In the notation of Section 2, X; is a column vector of N=40
ones, Bl = 10, B2 = <4 and Xz is a column vector obtained as the values of X2
from Table 1 of Jobson and Fuller (1980).

Although the estimates were calculated in the forms which do not assume

Ly ® 0, we fixed Ly*® 0 and performed the Monte-Carlo study. The rows of
the error terms S, Vi and U1 were thus generated independently; all three were
efther normally distributed or had a contaminated normal distribution. In
general, any random variable was either N(O, o?) (Normal) or N(O, o?) with
probabtlity 0.9 and N(O, czaz) with probability 0.1 (Contaminated Normal),
with

- e =l b
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Equation Error (5): a2

s 0 or 4, ¢c=5

~N

Y Measurement Error (V): ¢ 4, ¢=5

<

= N

X Measurement Error (U): ¢° = 1,2 or 4, c=3

The normality-MLE is calculated assuming og = 0, so the results for
cg = 4 give some idea of its robustness against this assumption.
The normality-MLE was computed by (2.5). The moments estimator was
(2.4), with exception that the term in (2.4)
r r '
I & CixC
1kl IR
J=k
was replaced by Fuller's modification (Fuller, (1980), page 414-415) using
Fuller's a=1. This modification is crucial to get the best performance of the
moments estimator. Although this modification occurs with negligible
probability asymptotically, we found in our study that it occurred often.

Finally, we studied a generalization of the moments estimator (2.4) introduced
by Carroll and Gallo (1982) and designed to be robust against departures from
normality in & and V. If Fuller's modification was necessary, we used his
estimator. Otherwise, we solved

o
]
[ o I

i=1

L2 "( Yu'fl’ez i )
° (4.1)
TR ( Yiz"frsz Ziz)

(o]

where (zij} are the individual elements of Cj and o is the median absolute
residual from the moments fit divided by .6745. It is easy to solve (4.1) by

- T i B Cacs, i - e
e e — Y 25 RS A M g S A e s P it e
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iteratively reweighted least squares, although some care must be taken. To
this date there is no estimator with distributiona) robustness properties
which includes as a special case the normality-MLE, although such an estimator
will surely be soon discovered. For Case No. 1, Brown (1982) has suggested
such a class, but his proof of consistency is in error and his estimator is
not consistent and asymptotically normal in general.

Mean square error {MSE) efficiencies relative to the normality-MLE are given

in Table 1, along with the percentage of times Fuller's modification was used.
Efficiencies are also given in Table 2 for the 95th percentile of the absolute
errors for the different estimators. The first twelve lines of each table are

for the situation of no equation error (§ = 02 = o), assumed in calculating

8
the normality MLE. Note as suggested by Theorem 2 that the normality-MLE
generally dominates the moments estimator {but not vastly so), even at non-
normal distributions. The Carroll-Gallo estimator is generally the best, even

when compared to the normality-MLE and even though it is meant to improve the

moments estimator, not the normality-MLE. The Carroll-Gallo estimator does

lose some efficiency when the measurement error in x2 becomes very large; this
is a reflection of the fact that the "asymptotically negligible” Fuller
modification is needed 30%-50% of the time. Clearly, it would be helpful to
have a distribution-robust generalization of the normality-MLE. Further work
should also focus on bounded influence (Carroll and Gallo (1982) make one
simple suggestion along these lines).

The last twelve lines of Tables 1 and 2 reflect the situation 02 =4, j.e.,

there is substantial equation error. Here the normality-MLE ca?culated
assuming a§ = 0 does particularly poorly. Clearly, the normality-MLE is not
robust against violations of the linear functional relationship (no equation
error). Certainly, the Monte-Carlo suggests the need for calculation and
study of the normality-MLE in the general Case No. 2. In the absence of such
2 general estimator, we would in practice favor the moments estimator (2.4)

with Fuller's modification over the estimator (2.5), especially for small

- s
B
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samples or if substantial equation error is a possibility. Wolter and Fuller
(1982 a,b) also present Monte-Carlo which emphasizes that the moments
estimator can be superior in practice.

We consider the results for the Carroll-Gallo estimator to be very
encouraging, but further development is clearly needed. On an interim basis,
our estimators should be considered a supplement to and not a replacement for
Fuller's modified MME.

5. Comparisons with the Least Squares Estimator

It is well-known that the ordinary least squares estimate computed as if the
observed values C, were the exact values of interest,

B o= (chcately,

js inconsistent for B in E1V models. There are, however, situations in which
least squares can consistently estimate particular parameters of interest.
One such situation is two-class analysis of covariance. (DeGracie and Fuller
(1972) considered this situation in an EIV context). The most important
parameter is often the treatment difference; it turns out that this is
consistently estimated by least squares as long as subjects are assigned to
treatments in such a way that the difference between the treatment means of
the covariate approaches zero, as would occur in a randomized or matched
study. More generally, Gallo (1982a) has shown

Theorem 3 Let v' = [Yl' 72']. where v, is a (pl x 1) vector and v, is a
(py x 1) vector. Then

~ P
Y B vy' B for all 8, L iff

(5.1)

l8 [} -1
Y2 T Y1 81 A2
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The advantage of such consistent contrasts is that we can consistently
estimate important parameters without needing replication or the often
artificial assumption (2.2). The LSE can only be considered if it is as good
an estimator as the EIV methods such as (2.3) - (2.5).

For‘example, first consider Case No. 1. General comparison of él ang EM turns
out to be difficult in our model, because the 1imit distribution of BL is not
easily calculated. The following heuristic calculations are informative.
Suppose

1/2 [] ] ] '1 ] L] .
(this implies (5.1)). Then
1/2

Theorem 4 Under (5.2), N*/° y' (él - B) is asymptotically normal with mean
zero and covariance Cov ‘BL’ v). Further,

Cov (B, Y) <¥' Cov (8) v, (5.3)

i.e., the LSE has no larger asymptotic variance then the normality-MLE.
Equality holds if and only if Ly =Ly By-

The proof of Theorem 4 is in Section 7. Since (5.2) cannot be guaranteed, the
relevance of Theorem 4 is heuristic. For example, in the ANOCOVA example
mentioned previously, (5.2) implies that the true mean covariable difference
is o (N'I/Z), which is not assured even if the observed means are set equal
for al1 N. The Monte-Carlo reported later supports Theorem 4, but other
theoretical calculations are also possible.

Consider balanced two-class analysis of covariance such as might occur in a
randomized study. In the notation of Section 2.
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(5.3) X} = l:zl Zy oreeenen z,:,
(u
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The parameter of interest is a = (0 1 0) B. If the design is actually
randomized, the {Zi} would be i.i.d. with mean My and variance 02. This is
not our functional model because X2 is not a vector of fixed constants,
nevertheless Theorem 1 s true in this instance. Denoting the estimates of a
by @ , ay, op and “MR for the LSE and (2.3) - (2.5) respectively, one can use
Theorem 1 to prove that °l is always as least as good asymptotically as the
others. If by an appropriately standardized version of a we mean Nl/2 (a -a}),
then

Theorem 5 Appropriately standardized, in either Case No. 1 or Case No. 3, the

-~

LSE ;1 always has smaller asymptatic variance than ays ;R or oyp.

Theorem 5 seems to imply that in such randomized studies, one is better off
not using EIV techniques. Also, in terms of inference, detailed calculations
enable one to prove

Theorem 6 Consider Case No. 1 (this result holds for Case No. 3 as well).
(°i - a) is asymptotically normal with mean zero and variance of Let of

be the usual estimate of the variance of NI/Z (uL - a). Then

~2 P 2
q * o -

Thu§, while errors-in-variables make the LSE less efficient, the inferences
one normally makes using the LSE are asymptotically correct for the treatment

effect in randomized two class ANOCOVA.

R
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We also performed a small Monte-Carlo study of two class ANOCOVA when N=40 and
r=s=2. The random variables for measurement and equation error were generated
as in Section 4, although we only studied the case of no equation error. The

covariables of (5.3) were normally distributed with mean zero and variance 9.

We chose B' = (4 4 4) so that a = 4.

In Table 3, for estimating the treatment effect a we report the MSE
efficiencies of the LSE relative to the normality-MLE. The results are
strikingly in accord with Theorem 5.

As seen in Table 3, even when there is no equation error, the LSE is much
better than the normality-MLE for estimating the treatment effect, while the
LSE is much worse for estimating the often less important covariable effect.

The preceeding results apply only to balanced analysis of covariance. 1f the
covariates are not balanced across treatments, the LSE will inconsistently
estimate the treatment effect, with possibly disastrous consequences.

6. Proof of Main Result

In proving Theorem 1, we will make use of the following result.

Lenma 1 Let {Xi} and {Yil be two sequences gf randog variables, each i.1.d.
with zero mean, positive finite variances 9y and Oy s respectively, and Cov
Xy, Yg) =

Gij Oxy* Let {ai} be a sequence of constants satisfying

. e

n
liﬂ nl o 812 - a2 , 0¢ a2 <o, (6.1)

Thep with
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converges in distribution to a standard normal random variable.

The proof is straightforward, and is contained in Gallo (1982a).

We now outline the proof of Theorem 1. Again, complete details are provided
by Gallo (1982a).

Proof of Theorem 1 Part (i): 1let

W, = [C, Y] [Cs Y]
_ -1
- -1
S2 (S1 [Ip2 82] ) Sl
53 2 - 52 [0 81]'-
The following representation is essentially an extension of one obtained by
Gleser (1981):

) 1. 0
AT I IO AN A A PR RS A 0, (1)
53 35, (6.2)

as long as
My - £ (MD)B' 11" = 0 (n1/2). (6.3)
Thus, finding a 1imit distribution for éM reduces to finding one for the term

in (6.3). Letting
' H=[X X8], 6 = [Uyx €]

with Hy, G; the i*" rows of these matrices, and noting that H [8' -1]' = 0,
for a1l ve B! we nave

N .
Y. (u* - E(u*)) [B' '1]' = izl Y' (Hi G% + Gi G.i - x*) (3' '1]'-
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If v' = [B' -1], then each v' H1 = 0 and Vimiting normality follows trivially
since we have a sum of i.i.d. random variables with finite variance. For all

other v,

4 N

N1 r (v Hi)2 =N
i=]

and the sequences {G; (g -11'} and (' (G4 G; - Iu) [8' -1]'} are each

JYWWY*T[%BTA[%B]Y>Q
j.i.d. with zero mean and finite variances. Thus, Lemma 1 applies, and after

some algebra we obtain
N2, - B0+ N (0, 0 (1) 81" A L1 81 + 5, + I, (8 -1]° [8 -1] 5.

The result (3.1) follows using (6.2), after some more algebra.

Part (1i):
o II ' 1 ,z1: '
B = L’#J Ci* CJ*) ('i#j ci* YJ)
WG e =N Gle ot e v g8

= v (1)t 7Y /2 Te Cont (Y5 = Cpu 8) 4 0 (1)

as long as

L. . N 1/2

With 6y = [Ug, €51 and Uyl X', Gy the K" rows of Ujss X and G , we have,

for a1l ve RP,

N r
L ] ) ] ] ] )
Ve Gt (g o Cgn B 7o B (I T Skt 1 ke B T8 L

The sequences { £ G, [B' -1)'} and {y' £ X U Gy [B' -11') are each 1.i.d.
ju1 Ik jeg Tk* U3k

with zero means and finite variances; also,

N
N°1 $ ((r-1) ¥' Xk)z- N'l (r-l)2 Y'X'Xy » (r-l)2 Yy' Ay
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thus Lemma 1 applies as before, and the result (3.2) follows.

Part (1ii): This is similar to part (i); with H and Gj as in part (11), le

-
n

'1 r [} - '

1* =T (r-1) 121 G; 6, -r LI G; Gj
r

 (H+ Gi)' (H + Gi) .

i=1

T

2*
Analagously to (6.2), we can obtain the following: if

(Tye = Plr-170 710 L8 -1 =0 (NH/)

then

bt - - 1 0 - - [} )
N2 (R-g) = r g [:}21 S;:] N2 (et ) 18 ) 0, (1).

For all ve WP,

Y Tpe = rir-17H T ) (80 17" =

'(z H' Gi+(r-1)1r.z(; G)[B -11'.
i=l i2j

As before, the sequences

,..-......_.‘

r P
{f G (B -11'} and (v' £ £ G,, 6, [8' -11'} @
gy Tk $o§ 1k25k | !

are 1.1.d., each with zero mean, and the sequence {y' "k] is Just as in part 4
(1), so the result again follows from Lemma 1. .
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7. Other Details

In this section we supply the details of the proofs of Theorems 2 and 4.

2

Proof of Theorem 2 With o5 = 0, the limiting covariance matrix of

BR in (3.2) becomes

-1, -1

A" (rrmda+ r"l(r-l)'1 (dr o + 0p)) sl

Comparing this with (3.3), since DR is positive semidefinite, it will suffice
to show that for all ye FRPZ

v (L1, 6] g 82]')'1 Y r, Y. (7.1)

Now since z can be expressed as

-1
-1 -1 -1
[ J [ ] (o - su I, gyt g gy -1

we have

Sl g -l

-1 .
€U u zeu°82)(zu zeu'BZ,

"1 LI '1 2_ 1

] -1 ¢ [ -1
Y [Ipz B,z [Ip2 Bl vy 2y L, Ty (7.2)

Equation (7.1) now follows immediately from (7.2) and Graybill (1969), Theorem
12.2.14 (5).

Proof of Theorem 4 Recall that

8 = (CL ¢t o(c ).
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It is easily shown that
nles e bavr, o ntes v bases
$G i
B 4 (A +% )'1 (AB+: L) = say
L u* eu* BL ' ‘
let
}f B = [Blf Byl » B = 8 Bzi]' :
¥
; we have
: B, S8y .1=1,2 (7.3)
, Thus for all ye WP,
; Y. BL = Yi B“_ + Y' BZL
3
3
,: ™ 1 ] '1 ) - (] _A ] ' '1 ] - s
(i Yy By * YaBy + (v (X{X 1)K Xo=v5 ) (By=By ) + vy (X X1 ) 77X (e-UBy )

so if vy satisfies (5.2), using (7.3) we obtain
1/72 .\ 45 - uwl/2 ty 1=l yo
N Y (BL-B) =N Yi (Xlxl) X1 (e-UBZL) + op (1).
It follows that Nl/2 v (EL-B) is asymptotically normal, since the elements of
"UBZL are 1.1.d. with zero mean and finite variance, and the elements of
Yi (Xixl)'l Xi satisfy the Noether condition. Also,

var (N 12y "‘1"‘1"'1 X (e-UBy ))

= ] -1 1] -l
Nyp X)) ysd vpay Ty

with & = 8y -111 8y -11'.
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Noting that for y satisfying (5.2)
o 1 1
{ Y e y=viayT Y

we obtain

R N ey

1

| N2y (3-8 BN 0, ¢ v 4.

ERE

f Now for y satisfying (5.2) the 1imit variance of éM in (3.1) becomes d Y'A'l Y,
so we need only show that d < d. With
. ) = - -1
M=2 -1 % %2
i - _1 '
= M+z)" [z =z 108 -1]

2 P U S

% we can, after some algebra show that
d-d, =q' (M + tu) q
which is non-negative for all q since M and L, are positive
definite; dsdi only if q = 0, that is, only if Zeu = zusz.
completing the proof.
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TABLE 1

MSE EFFICIENCIES FOR MSE EFFICIENCIES FOR
INTERCEPT SLOPE
S AND ¥ % 1] *
ERROR (o, =4 ERROR CARROLL/ % FULLER CARROLL/
DISTRIBUTION  THREUGHOUT)  DISTRIBUTION o, LSE MOMENTS  GALLO MODIFICATION  LSE MOMENTS GALLO
N 0 N 1 .90 .98 .95 2.8 .89 .98 .95
N 0 N 2 .52 .98 .97 31.2 .52 .98 .98
N 0 N 4 .23 1.02 1.02 50.0 .23 1.03 1.04
N 0 CN 1 .68 .95 1.07 13.4 .69 .95 1.07
N 0 cN 2 .31 .92 1.10 45.0 .31 .91 1.10
N 0 CN 4 .16 .88 1.08 57.8 .16 .89 1.09
CN 0 N 1 .96 .98 .147 00.0 .97 .98 1.44
CN 0 N 2 .63 .94 1.03 06.4 .62 .94 1.02
cN 0 N 4 .27 .96 .95 36.2 26 .96 .96
CN 0 CN 1 .81 .96 1.54 01.0 .82 .96 1.53
CN 0 CN 2 .37 .84 1.04 19.4 .37 .84 1.05
CR 0 CN 4 .16 .80 .93 47.6 .17 .80 94
N 4 N 1 1.15 1.19 1.18 00.0 1.17 1.21 1.20
N 4 N 2 .79 1.24 1.22 04.6 .79 1.25 1.24
N 4 N 4 .30 1.20 1.19 34.8 .30 1.21 1.20
N 4 CN 1 1.02 1.17 1.22 00.4 1.01 1.18 1.25
N 4 CN 2 .46 1.07 1.23 22.2 .45 1.06 1.23
N 4 CN 4 .19 1.00 1.22 49.4 .19 .99 1.21
CN 4 N 1 1.28 1.27 2.00 00.0 1.34 1.32 2.01
CN 4 N 2 1.57 1.92 2.33 00.2 .69 2.01 2.40
CN 4 N 4 .71 1.79 1.81 12.2 .74 1.85 1.87
CN 4 (w ] 1 1.48 1.51 2.20 09.0 1.52 1.55 .27
CN 4 CN 2 1.14 1.76 2.15 03.2 1.16 1.82 2.23
CN 4 N 4 .40 1.27 1.46 29.0 .40 1.29 1.49

T
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CTreTao

e i

. g TABLE 2
95¢th PERCENTILE OF 95¢th PERCENTILE OF
ABSOLUTE ERRORS - ABSOLUTE ERRORS -
EFFICIENCIES - INTERCEPT EFFICIENCIES - SLOPE
S AD Y o, [}
ERROR (o, %= & ERROR CARROLL/ CARROLL /
DISTRIDUTION  THRBUGHOUT)  DISTRIBUTION o, LSE MOMENTS GALLO LSE  MOMENTS GALLO
1.00 .96 1.00 9 » .98
.81 1.01 .98 82 1.00 .99

.68 1.08 1.08 67 1.0 1.09
.83 1.01 1.07 .79 K 14 1.03

64 .98 1.08 .60 94 1.03
53 .96 1.02 .82 .90 .98
.97 1.00 1.20 1.02 96 1.26
.87 .96 1.04 .86 97 1.0l
.69 97 96 .68 97 96

.92 1.00 1.30 .92 1.02 1.28
.65 94 1.00 .68 .93 1.02
.58 .92 1.00 .55 .89 1.00

1.08 1.15 1.14 1.09 .11 1.0%
.95 1.11 113 97 L.14 1.13
.18 1.14 1.14 79 1.1 1.14

1.04 1.12 1.1 1.06 1.5¢ 1.14
.13 1.07 1.1 .76 1.06 1.15
.58 1.00 1.1 62 1.06 1.16

[aXn]ls} an <«

o2 S xnnxzn| BRRCR Cxxxx=a
sassssassssnrs| cococccoccoone

SN BN RN RN BN LN RN RN -

1.09 1.09 1.45 1.17 1.14 1.42
1.34 1.37 1.53 1.34 1.39 1.51
1.06 1.32 1.3 1.09 1.4 1.3
o 1.20 1.19 1.48 1.25 1.20 1.53
o] 1.13 1.34 1.50 1.13 1.33 1.46
(o] .82 1.19 1,22 .83 1.12 1.28




TABLE 3

Efficiencies of the LSE Relative to the Normality-MLE
for the ANOCOVA Experiment

CN 4 1.78 0.21

X,u Measurement MSE Efficiency, MSE Efficiency,

Error Distribution % Treatment Effect Covariable Effect
N 1 1.02 0.80
N 2 1.07 0.36
N 4 1.34 0.15 _
CN 1 1.03 0.65 }
CN 2 1.16 0.29 ‘

1
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